No Task Left Behind: Multi-Task Learning of Knowledge Tracing and Option Tracing for Better Student Assessment
نویسندگان
چکیده
Student assessment is one of the most fundamental tasks in field AI Education (AIEd). One common approach to student Knowledge Tracing (KT), which evaluates a student's knowledge state by predicting whether will answer given question correctly or not. However, context multiple choice (polytomous) questions, conventional KT approaches are limited that they only consider binary (dichotomous) correctness label (i.e., correct incorrect), and disregard specific option chosen student. Meanwhile, Option (OT) attempts model choose for question, but overlooks information. In this paper, we propose Dichotomous-Polytomous Multi-Task Learning (DP-MTL), multi-task learning framework combines OT more precise assessment. particular, show objective acts as regularization term DP-MTL framework, an appropriate architecture applying our method on top existing deep learning-based models. We experimentally confirm significantly improves both performances, also benefits downstream such Score Prediction (SP).
منابع مشابه
Task Model Tracing 2
We use the cognitive architecture ACT{R to model a simple application task domain. Using a technique we call \Task Model Tracing," we have implemented a general mechanism for enhancing direct manipulation in a simple application's user interface. The task model tracing system is a layer between the application and the user interface that anticipates and follows possible user plans and agendas. ...
متن کاملMulti-Task Learning For Option Pricing
Reproduction partielle permise avec citation du document source, incluant la notice ©. Short sections may be quoted without explicit permission, if full credit, including © notice, is given to the source. Les cahiers de la série scientifique (CS) visent à rendre accessibles des résultats de recherche effectuée au CIRANO afin de susciter échanges et commentaires. Ces cahiers sont écrits dans le ...
متن کاملConnectionist models for tracing user-task profiles
This paper discusses an approach of modeling users’ task related characteristics in interactive systems. Connectionist models are used to trace the on-going interaction and user-task profiles. These models function as associative memories that can capture the causal relationships among users’ characteristics for the system adaptation. This approach can be used for stereotyping users’ characteri...
متن کاملthe effects of time planning and task complexity on accuracy of narrative task performance
هدف اصلی این تحقیق بررسی تاثیر برنامه ریزی زمانی، هم چنین افزایش میزان پیچیدگی تکالیف در نظر گرفته شده بصورت همزمان، بر دقت و صحت و پیچیدگی عملکرد نوشتاری زبان آموزان می باشد. بدین منظور، 50 نفر از دانش آموزان دختر در رده ی سنی 16 الی 18 سال به عنوان شرکت کنندگان در این زمینه ی تحقیق در نظر گرفته شدند و به دو گروه آزمایشی و کنترل بصورت اتفاقی تقسیم شدند. اعضای گروه آزمایشی هر دو تکلیف ساده و پی...
FAST: Feature-Aware Student Knowledge Tracing
Various kinds of e-learning systems, such as Massively Open Online Courses and intelligent tutoring systems, are now producing large amounts of feature-rich data from students solving items at different levels of proficiency over time. To analyze such data, researchers often use Knowledge Tracing [4], a 20-year old method that has become the de-facto standard for inferring student knowledge fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2022
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v36i4.20364